3D Trigonometry Questions By Topic:

Table of Contents

1 Bronze 4
1.1 Cubes/Cuboids 4
2 Silver. 5
2.1 Pyramids. 5
2.2 Triangular Prisms 8
2.3 Wedges 8
3 Gold 10
3.1 Tetrahedrons 10
4 Diamond 12
4.1 Harder Tetrahedrons 12

This topic is essentially knowing which right angled triangle(s) to form and then using Pythagoras and SOHCAHTOA on the triangles formed. In other words, we look to locate the right-angled triangles in 2D within these 3D shapes and then use:

- Pythagoras (if only sides are involved)
- SOHCAHTOA (if angles and sides are involved)

So, if you're good at Pythagoras and SOHCAHTOA then you'll find this topic easy. If you're not comfortable with Pythagoras and SOHCAHTOA, make sure you go back and learn these topics first, otherwise you'll struggle.

The five shapes you will encounter are:

The most common shapes encountered are cuboids, pyramids, prisms and tetrahedrons.
Cuboids
We commonly look at the following 2 right-angled triangles (purple and blue). We usually use Pythagoras or SOHCAHTOA on triangle ABD and Pythagoras or SOHCAHTOA on triangle BDH

Pyramids
Being good at pyramids is simply just a question of being able to form the correct right-angled triangle. Consider the following pyramid

We commonly look at the 5 following right-angled triangles

Take note how some of the lengths are half of the lengths of the width/lengths/diagonals of the base of the pyramid. It is key to realise this. The triangle that we normally look at first is

We commonly look at the following 2 right-angled triangles (red and blue). We usually use Pythagoras or SOHCAHTOA on triangle MAB and Pythagoras or SOHCAHTOA on triangle TMB.

Tetrahedrons

We look at the following 4 triangles:

1 Bronze

1.1 Cubes/Cuboids

1) The diagram shows a cuboid ABCDEFGH

$A B=5 \mathrm{~cm}$
$B C=7 \mathrm{CM}$
$A E=3 \mathrm{~cm}$
i. Calculate the length $A G$
ii. Calculate the size of the angle between $A G$ and the plane $A B C D$
2) The diagram shows a cuboid ABCDEFGH

Find
i. the length AG
ii. the angle between $A G$ and the plane $A B C D$
3) The diagram shows a cuboid ABCDEFGH. Find
i. the angle between FA and the plane $A B C D$
ii. the angle between HE and the plane $A B C D$
iii. the angle between $B H$ and the plane $A B C D$
4) The diagram shows a cube $A B C D E F G H$. The sides of the cube are length 5 cm . Calculate the angle between the diagonal AH and the base EFGH

i. Find the length of BH (7.07)
ii. Find the length of AH (8.66)
iii. Calculate the size of the angle between the diagonal AH and the base EFGH

2 Silver

2.1 Pyramids
5) The diagram shows a pyramid

i. Work out the slant edge TD
ii. Work out the size of angle TDO
iii. Find the size of the angle between $T C$ and the base $A B C D$
6) The diagram shows a pyramid

M is the midpoint of $C D$. Work out
i. the length TM
ii. The vertical height
iii. The angle between TM and the base ABCD
7) The diagram shows a pyramid.

BCDE is a square with sides of length 10 cm . The other faces of the pyramid are equilateral triangles with sides of length 10 cm .
i. Calculate the volume of the pyramid
ii. Find the size of angle DAB
8) Here is a pyramid with a square base $A B C D$.

$A B=5 \mathrm{~cm}$. The vertex T is 12 m vertically above the midpoint of $A C$. Calculate the size of angle TAC.
9) The diagram shows a pyramid with a horizontal rectangular base PQRS.

$\mathrm{PQ}=16 \mathrm{~cm}$
$Q R=10 \mathrm{~cm}$
M is the midpoint of the line PR
The vertex T , is vertically above M
MT=15 cm
Calculate the size of the angle between TP and the base PQRS
10) The diagram shows a pyramid

The base, $A B C D$, is a horizontal square of 10 side cm . The vertex, V , is vertically above the midpoint, M , of the base
VM=12 cm
Calculate the size of angle VAM
11) $V A B C D$ is a rectangular based pyramid with volume $336 \mathrm{~m}^{3} . \mathrm{X}$ is the centre of the horizontal base, directly above V

Work out the angle between VB and the base
12) A pyramid has a horizontal square base $A B C D$ with sides of length 230 metres. M is the midpoint of $A C$. The vertex, T, is vertically above M. The slant edges of the pyramid are of length 218 metres. Calculate the height, MT , of the pyramid.

2.2 Triangular Prisms

13) The diagram shows a triangular prism with a horizonal rectangular base ABCD.

$A B=10 \mathrm{~cm}, B C=7 \mathrm{~cm}$.
M is the midpoint of $A D$
The vertex T is vertically above M
MT=6 cm
Calculate the size of the angle between TB and the base ABCD
14) The diagram shows a triangular prism with a horizonal base $A B C D$.

M is the midpoint of $A D$
The vertex V is vertically above M
$D C=18 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}, \mathrm{MV}=7 \mathrm{CM}$
Calculate the size of the angle between VC and the plane ABCD

2.3 Wedges

15) $A C B D E F$ is a triangular prism

$A B=9 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$
Angle $A B C=90^{\circ}$
M is the midpoint of $C D$
Calculate the size of the angle between AM and the plane BCDF
16) In the diagram below, $A B E F, A B C D$ and $C D F E$ are all rectangles.
$A D=12 \mathrm{~cm}, D C=20 \mathrm{~cm}$ and $D F=5 \mathrm{~cm}$
M is the midpoint of $E F$ and N is the midpoint of $C D$

Calculate

i. The length of AF
ii. The length of $A M$
17) The diagram shows a triangular prism

The base $A B C D$ of the prism is a square of side length 15 cm
Angle $A B E$ and angle CBE are right angles
M is the point on DA such that $D M: M A=2: 3$
Calculate the size of the angle between EM and the base of the prism

3 Gold

3.1 Tetrahedrons

18) A, B and C are pints on a horizontal ground.
C is due north of B
A is due South of B and $A B=40 \mathrm{~m}$
There is a vertical flagpole at B
From A, the angle of elevation of the top of the flagpole is 13°
From C, the angle of elevation of the top of the flagpole is 19°

Calculate the distance AC
19) This 3D diagram represents a paperweight

The horizontal base $A B C$ is a right-angled triangle
CT is vertical
Angle $\mathrm{ACB}=36^{\circ}, \mathrm{BC}=13,3 \mathrm{~cm}$ and $C T=9.6 \mathrm{~cm}$
Work out the size of the angle between AT and the horizontal base
20) The diagram shows a tetrahedron.

$A D$ is perpendicular to both $A B$ and $A C$.
$A B=10 \mathrm{~cm}, A C=8 \mathrm{~cm}, A D=5 \mathrm{~cm}$. Angle $B A C=90^{\circ}$
Calculate the size of angle BDC
21) The diagram shows a vertical pole, $P Q$, which is supported by two wires fixed to the horizontal ground at A and B

$B Q=40$
$P \widehat{B} Q=36^{\circ}$
$B \hat{A} Q=70^{\circ}$
$A \widehat{B} Q=30^{\circ}$
Find
i. The height of the pole, PQ
ii. The distance between A and B
22) The diagram shows a pyramid with base $A B C$

$C D$ is perpendicular to both $C A$ and $C B$
Angle $C B D=34^{\circ}$, Angle $A D B=45^{\circ}$, Angle $D B A=60^{\circ}$,
$\mathrm{BC}=20 \mathrm{~cm}$
Calculate the size of the angle between the line AD and the plane ABC

4 Diamond

4.1 Harder Tetrahedrons

23) The three dimensional diagram shows the points P and q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground.

The angle of elevation of the top S of the flagpole from P and Q are respectively 35° and 40° and $P Q=20 \mathrm{~m}$. Determine the height of the flagpole.
24) The following three-dimensional diagram shows the four points $A, B C$ and D. A, B and C are in the same horizontal plane and AD is vertical. $A \widehat{B} C=45^{\circ}, \mathrm{BC}=50 \mathrm{~m}, A \widehat{B} D=30^{\circ}, A \widehat{C} D=20^{\circ}$

Using the cosine rule in the triangle ABD, or otherwise find AD.

3D Trigonometry Questions By Topic Solutions:

Table of Contents

1 Bronze 2
1.1 Cubes/Cuboids 2
2 Silver 5
2.1 Pyramids 5
2.2 Triangular Prisms 9
2.3 Wedges 10
3 Gold 12
3.1 Tetrahedrons 12
4 Diamond. 16
4.1 Harder Tetrahedrons 16

1 Bronze

1.1 Cubes/Cuboids

1)

i.

Step 1: Find AC using Pythagoras

$$
A C=\sqrt{5^{2}+7^{2}}=\sqrt{74}
$$

Step 2: Find AG using Pythagoras
$A G=\sqrt{\sqrt{74}^{2}+3}=\sqrt{74+9}=\sqrt{83}=7.94$

$$
A G=9.11 \mathrm{~cm}
$$

Note: There is a shortcut to find the length AG. It is the square root of all 3 lengths squared and added together $\sqrt{3^{2}+5^{2}+7^{2}}=\sqrt{83}=9.11$
ii. Drop a perpendicular from line AG to plane ABCD. We drop it from the point on the line AG that doesn't always touch the plane (this is G since A already touches the plane $A B C D$) to the plane. This meets the plane $A B C D$ at the point C. We then form the triangle with these points (A, C and G). The angle being asked for is the angle formed with the point on the line that was already touching the plane (A).

We have all lengths so can use either sin, cos or tan
Let's use tan
$\tan x=\frac{3}{\sqrt{74}}$
$\theta=\tan ^{-1}\left(\frac{3}{\sqrt{74}}\right)$
$\theta=19.2^{\circ}$
2)

3)

$\theta=\tan ^{-1}\left(\frac{8}{16}\right)$	$\beta=\tan ^{-1}\left(\frac{4}{16}\right)$	Let's Find BD by using Pythagoras on triangle BAD $\theta=26.6^{\circ}$
$B=14.0$	$B D=\sqrt{16^{2}+4^{2}}=\sqrt{272}=16.5$	
$\tan \alpha=\frac{8}{16.5}$		
$\alpha=\tan ^{-1}\left(\frac{8}{16.5}\right)$		
$\alpha=25.9^{\circ}$		

4)

2 Silver

2.1 Pyramids

5)

6)

i. It is best to use triangle TDM since triangle TOM has 2 many unknowns We can find TM using Pythagoras $T M=y=\sqrt{13^{2}-5^{2}}=\sqrt{144}=12$	i. Way 1: We know TM= 12 from part i. Using Pythagoras $\text { TTO }=x=\sqrt{12^{2}-5^{2}}=\sqrt{119}=10.9$ Way 2 : We can find OD by finding $B D$ and halving it $\begin{aligned} & B D=\sqrt{10^{2}+10^{2}}=\sqrt{200} \\ & O D=\frac{\sqrt{200}}{2}=7.071 \\ & T O=x=\sqrt{13^{2}-7.071^{2}}=10.9 \end{aligned}$	ii. We know TM= 12 from part i. $\begin{aligned} & \cos \alpha=\frac{5}{12} \\ & \alpha=\cos ^{-1}\left(\frac{5}{12}\right) \\ & \alpha=65.4^{\circ} \end{aligned}$

7)

8)

$$
\begin{aligned}
\tan (\alpha) & =\frac{12}{2.5 \sqrt{2}} \\
& =73.6^{\circ}
\end{aligned}
$$

9)

10)

11)

2.2 Triangular Prisms

13)

14)

2.3 Wedges

15)

16)

17)

3 Gold

3.1 Tetrahedrons
18)

19)


```
Look at the green triangle
\(\cos 36=\frac{x}{13.3}\)
\(x=10.759\)
Look at the purple triangle
\(\tan C A T=\frac{9.6}{10.759}\)
CAT \(=\tan ^{-1}\left(\frac{9.6}{10.759}\right)=41.7^{\circ}\)
```

20)

22)

$\tan 34=\frac{x}{20}$
$x=13.49$
$x^{2}+20^{2}=y^{2}$
$13.49^{2}+20^{2}=y^{2}$
$y=24.12$

$\frac{x}{\sin 60}=\frac{24.12}{\sin 75}$
$x=21.63$

[^0]
4 Diamond

4.1 Harder Tetrahedrons

23)

We will look at the 3 following triangles out of the possible 4
Right angled triangle PRS
Right angled triangle QRS
Non-right angled triangle PQR
We don't need to look at triangle PSQ

Let's get the sides x and y in terms of z since z is common to both triangles

Looking at right angled triangle PRS:

$\tan 35=\frac{z}{x}$
$x=\frac{Z}{\tan 35}$

$\tan 40=\frac{z}{y}$
$y=\frac{z}{\tan 40}$
Looking at non right-angled triangle PQR:

This is a non right angled triangle so we must use cosine rule. We have both x and y in terms of z, so we can plug these into the cosine rule
$20^{2}=x^{2}+y^{2}-2(x)(y) \cos 45$
$20^{2}=\left(\frac{z}{\tan 35}\right)^{2}+\left(\frac{z}{\tan 40}\right)^{2}-2\left(\frac{z}{\tan 35}\right)\left(\frac{z}{\tan 40}\right) \cos 45$
$400=\left(\frac{z}{\tan 35}\right)^{2}+\left(\frac{z}{\tan 40}\right)^{2}-2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{z}{\tan 35}\right)\left(\frac{z}{\tan 40}\right)$
$400=\frac{z^{2}}{(\tan 35)^{2}}+\frac{z^{2}}{(\tan 40)^{2}}-\left(\frac{2}{\sqrt{2}}\right)\left(\frac{z^{2}}{\tan 35 \times \tan 40}\right)$
$400=z^{2}\left(\frac{1}{(\tan 35)^{2}}+\frac{1}{(\tan 40)^{2}}-\sqrt{2}\left(\frac{1}{\tan 35 \times \tan 40}\right)\right)$
$z^{2}=\frac{400}{\left(\frac{1}{(\tan 35)^{2}}+\frac{1}{(\tan 40)^{2}}-\sqrt{2}\left(\frac{1}{\tan 35 \times \tan 40}\right)\right)}$
$Z=\sqrt{\frac{400}{\left(\frac{1}{(\tan 35)^{2}}+\frac{1}{(\tan 40)^{2}}-\left(\frac{2}{\sqrt{2}}\right)\left(\frac{1}{\tan 35 \times \tan 45}\right)\right)}}$
$z^{2}=\frac{400}{2.0396+1.420-2.407}$
$z=\sqrt{\frac{400}{2.0396+1.420-2.407}}=380.011$
$z=19.5 \mathrm{~m}$
24)

[^0]: $\sin \alpha=\frac{13.49}{21.63}$
 $\alpha=38.6^{\circ}$

